Characteristics of Atmospheric-pressure Microgap Glow discharge Excited by Microwave Aiming at VUV Light Source

A. Kono T. Shibata and M. Aramaki

Department of Electrical Engineering and Computer Science Nagoya University

Outline

- Microwave-excited microgap discharge:
 cw, high-pressure, high-density, non-thermal plasma
- Electron temperature and density measurements by laser Thomson scattering
- Gas temperature characteristics
 - **OES** measurements
 - Fluid dynamic simulation for heat transport
- Preliminary VUV emission measurements
- Summary

A comparison

 $p \sim 1 \text{ atm}$ Pulsed $n_e \sim 10^{15} \text{ cm}^{-3}$ $\Delta t \sim 100 \text{ns} \quad \epsilon \sim 1 \text{ MW cm}^{-3}$ $T_g \ll T_e$

CW plasma production with similar parameters?

Concept of high-pressure microgap discharge

·High power-density deposition

DC or RF excitation leads to discharge constriction

Microwave power transfer to the microgap

Microgap discharge in air (100 W)

High-spatial-resolution Thomson scattering measurement

High-spatial-resolution Thomson scattering measurement

Fitting of the observed Thomson/Raman spectra

Spatial distribution of n_e and T_e for air discharge

2 mm

Comparison between air and He/N₂(5%) discharges

Electron density and temperature for different plasmas

Working gas	Air	He/N ₂ (5%)	Ar
Conditions	100 W No flow	100 W Slow flow	8 W 2 L/min
n _e (cm ⁻³)	1.8×10 ¹⁵	3 × 10 ¹⁴	3 × 10 ¹⁴
T _e (eV)	1.2	1.5	1.2

Preliminary VUV emission measurements

Power dependence (without gas flow)

Microwave power (W)

Gas Temperature study

- *** OES measurements**
- * Fluid dynamic simulation of heat transport

Power dependence of the gas temperature (derived from $N_2 C^3 \Pi_u - B^3 \Pi_g$ optical emission)

Weak dependence of $T_{\rm g}$ on $P_{\mu \rm wave}$

Flow-rate dependence of the gas temperature

Temperature structure in the microgap discharge

Heat transport simulation: Simulation space and boundary conditions

Heat transport simulation: Governing equations

Mass balance

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \ \mathbf{v}) = 0$$

Momentum balance

Model (a): Q = constModel (b): $Q = Q_0 \frac{\rho}{\rho_0}$

$$\rho[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}] = -\nabla p + \nabla \cdot \left\{ \eta(\nabla \mathbf{v} + [\nabla \mathbf{v}]^T) - \frac{2}{3}\eta(\nabla \cdot \mathbf{v})\mathbf{I} \right\}$$

Energy balance

$$\rho c \left(\frac{\partial T_g}{\partial t} + \mathbf{v} \cdot \nabla T_g \right) = \nabla \cdot \left(\kappa \ \nabla T_g \right) - p \nabla \cdot \mathbf{v} + \left(\nabla \mathbf{v} \right) : \begin{cases} \eta (\nabla \mathbf{v} + [\nabla \mathbf{v}]^T) - \frac{2}{3} \eta (\nabla \cdot \mathbf{v}) \mathbf{I} \end{cases} + Q \\ \text{Thermal conduction by adiabatic Compression / expansion} & \text{Heating by viscosity (plasma)} \\ \kappa = a T_g \frac{0.77}{m} \qquad \kappa = \frac{5}{2} \cdot \frac{c \eta}{m} \qquad p = \frac{\rho k T_g}{M} \end{cases}$$

Implication of $n_e = 10^{15}$ cm⁻³

Gas heating by elastic collisions of electrons

$$Q = \frac{4}{\sqrt{\pi}} \left(\frac{2m}{M} T_e\right) (\sigma_m v_e) n_e n_g$$

Gas temperature without gas flow

Q or Q₀ (MWcm⁻³)

Effect of gas flow on the temperature profile C

He, model (b), $Q_0 = 0.5 \text{MW/cm}^3$

Dependence of the gas temperature on the gas flow

He, model (b), $Q_0 = 0.5 \text{MW/cm}^3$

Gas heating and pressure loss

Unsuitable experimental setup

Ar₂ intensity vs. gas flow rate and pressure

New gas flow scheme

- Microwave excited microgap plasma
 - * Stable *cw* production of high-pressure, high-density,
 - non-thermal plasma over some length
 - * Power deposition level of ~1 MW/cm³
- High-spatial-resolution Thomson scattering measurement
 - * Spatial resolution ~25 μm
 - * $n_e = 1.8 \text{ x } 10^{15} \text{ cm}^{-3}$ for air discharge at 100 W
- Fluid dynamic simulation for heat transport
 - * Importance of local gas density change for gas heating process
 - * Need of selfconsistent treatment of plasma and gas dynamics
- To efficiently lower the gas temperature and to obtain efficient VUV excimer emission, the gas flow scheme is very important.

Future work: New gas flow scheme Electron temperature control Frequency upscaling