Characteristics of Atmospheric-pressure Microgap Glow discharge Excited by Microwave Aiming at VUV Light Source

A. Kono T. Shibata and M. Aramaki

Department of Electrical Engineering and Computer Science
Nagoya University

LSW 2005
Outline

• Microwave-excited microgap discharge: cw, high-pressure, high-density, non-thermal plasma

• Electron temperature and density measurements by laser Thomson scattering

• Gas temperature characteristics
 • OES measurements
 • Fluid dynamic simulation for heat transport

• Preliminary VUV emission measurements

• Summary
A comparison

Discharge pumped excimer laser

Discharge in a microgap

Pulsed

$\Delta t \sim 100\text{ns}$

$p \sim 1 \text{ atm}$

$n_e \sim 10^{15} \text{ cm}^{-3}$

$\varepsilon \sim 1 \text{ MW cm}^{-3}$

$T_g << T_e$

$\sim 1 \text{ cm}$

1/100

(in linear dimension)

$\sim 100\mu m$

CW plasma production with similar parameters?
Concept of high-pressure microgap discharge

- Non-equilibrium plasma
 \[\frac{(d / \pi)^2}{D} < \frac{1}{n_e \sigma_m v_e / m_e} \]

 Diffusion lifetime Heating time

- Rapid gas replacement
 \[\tau = \frac{w}{v_{flow}} \]
 \[v_{flow} = 100 \text{ m/s} \]
 \[d = 100 \text{ µm} \]
 \[\tau = 1 \text{ µs} \]

- Stable discharge
- High power-density deposition
DC or RF excitation leads to discharge constriction

DC

200µm

DC or RF(13.56MHz)

Microwave
Microwave power transfer to the microgap

- Microwave (2.45 GHz)
- Waveguide
- Microwave (2.45 GHz)
- Copper electrode
- Microgap
- Heat conduction
- Copper block (2 cm thick)
- Strip-line structure
- $\lambda/4$
- Gas flow
Microgap discharge in air (100 W)
High-spatial-resolution Thomson scattering measurement

YAG laser

Plasma
High-spatial-resolution Thomson scattering measurement

YAG 2ω 532 nm

0.5mm aperture

3000 mm

f=150 mm doublet lens

Microgap plasma

Electrode

2 mm

YAG 2ω 532 nm

Entrance slit

Triple Grating Spectrograph

532 nm

10^{-6}

ICCD camera

PC

Entrance slit

High-spatial-resolution Thomson scattering measurement

Microgap plasma

Electrode

2 mm

YAG 2ω 532 nm

Entrance slit

Triple Grating Spectrograph

532 nm

10^{-6}

ICCD camera

PC

Entrance slit

High-spatial-resolution Thomson scattering measurement

Microgap plasma

Electrode

2 mm

YAG 2ω 532 nm

Entrance slit

Triple Grating Spectrograph

532 nm

10^{-6}

ICCD camera

PC
Fitting of the observed Thomson/Raman spectra

air 1atm, no gas flow, microwave power 100W
Spatial distribution of n_e and T_e for air discharge

- Air 1 atm,
- No gas flow,
- Microwave power 100W

Electrode 2 mm
Comparison between air and He/N$_2$ (5%) discharges

Thomson spectra at the plasma center

Discharge without chamber (1 atm)
Microwave power 100W

$T_g \approx 2500K$ for air
$T_g \approx 1200K$ for He/N$_2$
(from Raman)
Electron density and temperature for different plasmas

<table>
<thead>
<tr>
<th>Plasma Type</th>
<th>Density</th>
<th>Temperature</th>
<th>Other Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary VUV emission measurements

Spectra

Ar: 1 atm
Microwave power: 3.5W

Xe: 1.5 atm
Microwave power: 1W

Power dependence (without gas flow)

He/Ar(20%), 2.5 atm
Ar (420.1 nm)

He/Xe(10%), 2.5 atm
Xe (823.2 nm)
Gas Temperature study

* OES measurements
* Fluid dynamic simulation of heat transport
Power dependence of the gas temperature
(derived from $N_2 \; C^3\Pi_u - B^3\Pi_g$ optical emission)

Weak dependence of T_g on $P_{\mu\text{wave}}$

air 1atm, no gas flow
Flow-rate dependence of the gas temperature

Open-air setup
1 atm
microwave power 100W
Temperature structure in the microgap discharge

~2000K (air), ~1200K (He)

~400K

19K

63K/cm

2 mm

100 µm

100 µm

50 W

Cu electrode

Cu electrode
Heat transport simulation:
Simulation space and boundary conditions

(a) Electrodes

(b) Simulation space

\[\frac{\partial T_g}{\partial x} = 0 \]
\[\frac{\partial v}{\partial x} = 0 \]
\[p = \text{const} \]
\[T^g = 300 \text{K} \]
\[v = 0 \]
Heat transport simulation:
Governing equations

Mass balance
\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0
\]

Momentum balance
\[
\rho \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + \nabla \left\{ \eta (\nabla \mathbf{v} + [\nabla \mathbf{v}]^T) - \frac{2}{3} \eta (\nabla \cdot \mathbf{v}) \mathbf{I} \right\}
\]

Energy balance
\[
\rho c \frac{\partial T_g}{\partial t} + \mathbf{v} \cdot \nabla T_g = \nabla \cdot (\kappa \nabla T_g) - p \nabla \cdot \mathbf{v} + (\nabla \mathbf{v}) : \left\{ \eta (\nabla \mathbf{v} + [\nabla \mathbf{v}]^T) - \frac{2}{3} \eta (\nabla \cdot \mathbf{v}) \mathbf{I} \right\} + Q
\]

Thermal conduction
Heating / cooling by adiabatic
Compression / expansion
Heating by viscosity
Heat source (plasma)

\[\kappa = a T_g^{0.77}\]
\[\kappa = \frac{5}{2} \cdot \frac{c \eta}{m}\]
\[p = \frac{\rho k T_g}{M}\]
Implication of $n_e = 10^{15}$ cm$^{-3}$

Gas heating by elastic collisions of electrons

$$Q = rac{4}{\sqrt{\pi}} \left(\frac{2m}{M} T_e \right) (\sigma_m v_e) n_e n_g$$

for

$$\begin{aligned}
n_e &= 10^{15} \text{ cm}^{-3} \\
n_g &= 2.7 \times 10^{19} \text{ cm}^{-3} \text{ (1 atm)} \\
\sigma_m &= 10^{-15} \text{ cm}^2 \\
T_e &= 2 \text{ eV} \\
m/M &\text{ for He}
\end{aligned}$$

$Q = 0.45$ MW/cm3
Gas temperature without gas flow

Profile

Dependence on \(Q \) or \(Q_0 \)

He, model (b), \(Q_0=0.5\text{MW/cm}^3 \)

(a) Model \(Q = \text{const.} \)
(b) Model \(Q = Q_0 \rho / \rho_0 \)

Air (Experimental)
Effect of gas flow on the temperature profile C

He, model (b), $Q_0=0.5\text{MW/cm}^3$
Dependence of the gas temperature on the gas flow

Possibly due to admixture of ambient air

He, model (b), $Q_0=0.5\text{MW/cm}^3$
Gas heating and pressure loss

larger Δp
Unsuitable experimental setup

Direction of VUV observation

Expected gas flow path

more likely gas flow path
Ar₂ intensity vs. gas flow rate and pressure

Ar₂ intensity (arb. units) vs. Flow rate (L/min)
- Power 8W
- Pressure 1 atm

Ar(415nm) intensity (arb. units) vs. Flow rate (L/min)
- Power 8W
- Pressure 1 atm

Ar₂ intensity (arb. units) vs. Pressure (atm)
- Flow rate 1 L/min
- Power 8W
New gas flow scheme
Summary

• Microwave excited microgap plasma
 * Stable cw production of high-pressure, high-density, non-thermal plasma over some length
 * Power deposition level of ~1 MW/cm³
• High-spatial-resolution Thomson scattering measurement
 * Spatial resolution ~25 µm
 * $n_e = 1.8 \times 10^{15}$ cm$^{-3}$ for air discharge at 100 W
• Fluid dynamic simulation for heat transport
 * Importance of local gas density change for gas heating process
 * Need of selfconsistent treatment of plasma and gas dynamics
• To efficiently lower the gas temperature and to obtain efficient VUV excimer emission, the gas flow scheme is very important.

Future work: New gas flow scheme
 Electron temperature control
 Frequency upscaling